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Abstract 

Organic impurities in bauxite severely hinder the normal production of alumina. This study 

proposes a low-temperature ultrasonic-enhanced alkaline leaching process aimed at directly 

separating organic impurities from bauxite and purifying the leachate through H2O2 oxidation and 

CaO precipitation. Under optimal conditions of ultrasonic power at 550 W, temperature at 80 °C, 

time at 60 min, and NaOH concentration at 200 g/L, the leaching rate of organic carbon from 

bauxite reached 91.02 %, an improvement of 19.01 % compared to traditional leaching methods. 

XRD analysis of bauxite samples before and after leaching, along with results from XRF, carbon-

sulphur analysis, SEM-EDS, and AFM, confirmed the effective separation of organic impurities 

without causing any loss of bauxite, with the alumina to silica ratio increasing to 34.13. 

Subsequently, 20 % H2O2 and 800 mL/g of CaO were added to the leachate. Under ultrasonic 

power of 550 W and oxidation at 90 °C for 60 min, the organic carbon removal rate was 71.35 %. 

GC-MS analysis confirmed the successful removal of major organic compounds from the 

leachate, while the XRD results of the oxidation residue indicated that organic compounds were 

ultimately removed in the form of CaC2O4·H2O and CaCO3. Furthermore, the study elucidated 

the radical reaction mechanism of H2O2 in oxidizing organic compounds in alkaline solutions. 

The proposed process operates at low temperatures and atmospheric pressure, generating no waste 

during the process, making it a clean, low-energy, and efficient method for the direct separation 

of organic substances from bauxite. 

Keywords: Ultrasonic-enhanced leaching, Bauxite, Organic impurities, H2O2 oxidation, Clean 

processing. 

1. Introduction

Alumina has been widely used in multiple fields such as ceramic manufacturing, electronics 

industry, catalyst preparation, construction materials, laser materials, and high-temperature 

materials due to its excellent properties and characteristics including low density, high melting 

point, high boiling point, strong corrosion resistance, and high hardness [1, 2]. Currently, on a 

global scale, the Bayer process, which utilizes bauxite as the raw material, remains the primary 

method for alumina production [3, 4]. However, due to the presence of a certain proportion of 

organic impurity in bauxite and the continuous accumulation of organic impurity during the Bayer 

liquor circulation process [5], the harm caused by organic impurity has long constrained the 

sustainable development of the alumina industry [6, 7]. 
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Almost all the organic impurity in the Bayer process is introduced by bauxite, making the harm 

caused by organic impurity an inevitable issue [8]. In the dissolution process of bauxite, organic 

impurities will also dissolve in the sodium aluminate solution [9]. After the organic impurities 

dissolve in the sodium aluminate solution, they first alter the physical and chemical properties of 

the solution. One significant change is the increase in the dynamic viscosity of the sodium 

aluminate solution [10]. This not only makes the separation of red mud more difficult but also 

reduces the decomposition rate of seed, resulting in a decrease in the precipitation rate of 

aluminium hydroxide [11]. Secondly, the dissolved organic impurities form a layer of organic 

film on the surface of bauxite, which hinders the chemical mass transfer between the alkaline 

solution and the ore, directly reducing the leaching rate of alumina [12]. In addition, organic 

impurities can lead to a finer particle size and reduced strength of the resulting aluminium 

hydroxide products. This is detrimental to sedimentation and classification processes of 

aluminium hydroxide [13, 14]. Furthermore, organic impurities can decrease the whiteness of the 

final alumina product, resulting in lower product quality and impacting economic returns [15]. 

Lastly, the precipitation of low-molecular-weight oxalates can lead to accelerated scaling rates in 

decomposition tanks and reduce the lifespan of equipment [16, 17]. There is experimental data 

indicating that when the organic substance content in the Bayer liquor is 2.57 g/L, the seed 

decomposition rate decreases by 3.45 % [18]. In addition, for every 1 g/L increase in sodium 

oxalate concentration, the alumina output concentration will decrease by 1–2 g/L [19]. Therefore, 

it is essential to find a way to remove organic impurities from the Bayer process for the 

development of the alumina industry. 

 

Currently, there are publicly reported methods for removing organic impurities from the Bayer 

process: bauxite roasting [20–22], mother liquor roasting [23], flotation [24, 25], crystallization 

[26], precipitation [27–29], ion exchange [30-32], membrane treatment [33,34], and wet oxidation 

[35, 36]. The above methods have their own advantages and limitations, which hinder their 

widespread adoption and implementation on a large scale. Compared to the enormous energy 

consumption generated by pyrometallurgical processes such as roasting, hydrometallurgy 

technology has more advantages. 

 

In recent years, ultrasound has shown unique advantages as a novel intensification technology in 

the field of metallurgy [37]. Ultrasound is a type of mechanical wave with a frequency higher 

than 20 kHz, possessing high energy and short wavelength. During the wet leaching process, the 

cavitation and mechanical vibration effects generated by ultrasound can enhance the mass transfer 

of microbubbles formed in the liquid between the liquid and solid phases, and accelerates the 

movement of solid particles and uniformly disperses them in the solution [38]. When the 

microbubbles burst, not only does the solution's temperature temporarily increase, but microjets 

are also created at the solid-liquid interface. This reduces the thickness of the diffusion layer at 

the solid-liquid interface through stripping and erosion, generates new reaction interfaces, and 

accelerates the leaching reaction rate [39]. Compared to conventional leaching, ultrasound-

enhanced leaching has the advantages of improved leaching effect and shortened leaching time, 

thereby reducing the apparent activation energy of the reaction and decreasing energy 

consumption [40]. 

 

In conclusion, this study utilized low-temperature ultrasonic-enhanced alkaline leaching to 

directly separate organic impurity from bauxite, and completed a closed-loop process by purifying 

the leaching solution through H2O2 wet oxidation and CaO precipitation. The effects of different 

experimental parameters (ultrasonic power, temperature, time and NaOH concentration) on the 

leaching rate of total organic carbon (TOC) were investigated. Furthermore, H2O2 oxidation and 

CaO precipitation technology were employed to oxidize and precipitate organic substances in 

leaching solutions to achieve the goal of recovering the leaching solution. The study also 

discussed the reaction mechanism of H2O2 oxidizing organic substance in alkaline solution.  
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